Meeting the Restrictions and Certifications for Today and the Future.

DUSTRIA DE COLCHOES

esociación de

ABICOL – Associação Brasileira da Indústria de Colchões

23.11.2018 | C.Toyoshima

Emissions in the PU Industry

Automotive

Markets:

Seating, instrument panels, steering wheels, headliners, NVH

Key influencers:

- VDA German Association of the Automotive Industry
- GMW
- UL VIAQ Vehicle Interior Air Quality
- OEM-specific Requirements

Markets: Spray foam

Key influencers:

- SPFA Spray Polyurethane Foam Alliance
- EPA (HFOs, halogenated flame retardents, etc.)
- UL GREENGUARD

Comfort

Markets:

Mattresses, furniture, pillows, carpet backing

Key influencers:

- CertiPUR-US
- State and Federal Regulations

Global community is discussing product properties ...

Certificates (Specifications & Labels) can help address misconceptions

Not legal regulations, but may become legally binding if used for advertisement or if included in supply agreements.

Typical Criteria for Foam Certificates

EMISSION

What comes out of the foam?

 $\sim \sim \sim$

Volatile Organic Compounds

- Consumer exposure by inhalation

Extractable Substances

- Consumer exposure by dermal contact

CertiPUR-US – Emissions Specifications

independent Laboratory Linissions resting				
Substance	CAS-No.	Guideline Limit [mg/m ³]		
Formaldehyde	50-00-0	<0.1		
Benzene	71-43-2	<0.5 colo		
Toluene	108-88-3	<0.5 UP DE		
Styrene	100-42-5	<0.3		
Vinylcyclohexene	100-40-3	< LOD*		
4-Phenylcyclohexene	4994-16-5	< LOD*		
Butadiene	106-99-0 pp. 511-	< LOD*		
Vinyl Chloride	75-01-4	< LOD*		
Aromatic hydrocarbons	CIA	< 0.5		
TVOC Emissions	A.	< 0.5		

Independent Laboratory Emissions Testing⁷

⁷ Average Density and Average 25% IFD measured using procedures in Section 1 must be reported for the foam production used in Analytical Testing.

* Below the Limit of Detection

Test Method: ISO 16000-Parts 3, 6, 9, & 11 – with chamber volume of 0.5 or 1 m³. The foam sample is placed on the bottom of an emission test chamber and is conditioned for 72 hours at 23°C/50%RH, applying an air exchange rate n of 0.5 per hour and a chamber loading L of 0.4 m2/m³ (=total exposed surface of sample in relation to chamber dimensions without sealing edges and back) in accordance with ISO 16000-9 and ISO 16000-11.

http://certipur.us/

CertiPUR-US – Extraction Specifications

Polybrominated	(PBDE) Flame Retardant	Additives	

Substance	CAS-No.	Guideline Limit	
pentabromodiphenyl ether	32534-81-9	≤ 0.01 wt %	
octabromodiphenyl ether	32536-52-0	≤ 0.01 wt %	
decabromodiphenyl ether	1163-19-5	≤ 0.01 wt %	

http://certipur.us/

Emissions and Odor Sources by Component

8

Cyclic Low MW Siloxanes – Residual Components in Surfactants

Siloxanes do not have an odor. For VOC testing D4, D5, D6, D7 are of relevance.

Regulatory situation D4, D5, D6

- In Feb. 2018, Germany and ECHA proposed inclusion on the list of substances of very high concern ("SVHC list") for
 - Octamethylcyclotetrasiloxane (D4) based on its Persistent, Bioaccumulative and Toxic* (PBT) properties
 - Decamethylcyclopentasiloxane (D5) and Dodecamethylcyclohexasiloxane (D6) based on their very Persistent, very Bioaccumulative (vPvB) properties
- On June 27th 2018, D4, D5 and D6 have been included in the SVHC list.
- Inclusion on the list was based on environmental concerns, not on human health concerns
- Consequence of the SVHC listing:

D4, D5 and D6 have to be on the SDS (incl. a reference to SVHC) if present at or above 0.1 % (each)

* D4 is classified as toxic to reproduction category 2 (H 361)

Content of Cyclic Siloxanes in Flexible Foam Stabilizers

Low Emanation Flex Stabilizers = < 0.1 % Cyclic Siloxanes (1000 ppm)

2008 – Evonik started offering low VOC surfactants for flexible slabstock foam.

2010 – Evonik completed conversion to of all flexible slabstock surfactants to low VOC quality (< 0.1% cyclic siloxane)

2018 – Evonik to initiate cyclic siloxane testing of all production batches of flexible slabstock surfactants, and report measured value on Certificate of Analysis to confirm that reportable limit of 0.1% D4, D5 and D6 is not exceeded and hence can be excluded from SDS.

Standard Amines – significant Sources of Odor and VOC in foam

(high boiling point)

12

Standard Fugitive vs. Basic Reactive Amine Catalysts

Boiling points of amines:

NMM [N-methylmorpholin]	113 °C
DMP [dimethylpiperazin]	132 °C
DMEA* [dimethylethanol amine]	135 °C
NEM [N-ethylmorpholin]	138 °C
DMCHA [dimethylcyclohexyl amine]	163 °C
TEDA [triethylen diamine]	174 °C
DMBA [dimethylbenzyl amine]	182 °C
BDMAEE [bis(dimethylaminoethyl)ether]	189 °C
PMDETA [pentamethyldiethylene triamine]	200 °C
DEOA* [diethanol amine] Dabco NE1050	270 °C
DMDEE [N,N-dimorpholinodiethylether]	309 °C
TEOA* [triethanol amine]	310 °C

*= reactive amine

Typical foaming temperature

Flexible Foam with Index > 100: BDE > TEDA >>>> DMEA > No Emission catalysts

Special Reactive Blow Amine – Low Odor Results

Odor testing confirms difference between existing <u>reactive</u> blow catalysts.

- **Rating System**
- 1. Imperceptible
- 2. Perceptible, undisturbing
- 3. Clear perceptible, undisturbing
- 4. Disturbing
- 5. Strongly disturbing

The higher the temperature, the more differentiated the odor performance.

 \succ Critical factor in the production environment.

No Emission Catalysts: Replacement of Standard Catalysts

 There are reactive catalysts that provide similar activity and foam physical properties to conventional catalysts.

400	TDI-based formulation		
400	Polyol A [parts]	100	100
350	Water [pphp]	4.8	4.8
300	Standard surfactant [pphp]	1	1
250	Conventional gel [pphp]	0.14	-
1 200	-Conventional blow / gel catalysts Conventional blow [pphp]	0.05	-
Jan 150	-No Emission Catalysts No Emission gel [pphp]	-	0.17
100	No Emission blow [pphp]	-	0.06
50	Tin Octoate [pphp]	0.28	0.28
0	Time (c) CH ₂ Cl ₂ [pphp]	7	7
v	D 100 200 300 TDI 80 Index	<110>	<110>
	Density [kg/m ³]	19	19

- No Emission blow used at 1.1 : 1 replacement for conventional blow
- No Emission gel used at 1.2 : 1 replacement for conventional gel

15

Organotin & Stannous Salt Catalysts – Toxicology

	Dib utyl T in Dil aurate	Stannous Octoate	Emission Free Tin Catalyst	2-EHA free T in C atalyst
Substance Class	Tin organic compound!	Stannous salt	Stannous salt	Stannous salt
Labeling	Danger	Danger 🐼 🐼 🕥	Warning 🚺 🕸	Danger
Classification	Skin Corrosion (Cat.1C, H314) Skin Sensitation (Cat.1, H317) Cell mutagenicity (Cat.2, H341) Reprod. tox. (Cat.1B, H360) Organ Tox. (Cat.1,H370/H372) Acute aquatic toxicity (Cat.1, H400) Chronic aquatic toxicity (Cat.1, H410)	Serious Eye Damage (Cat.1, H318) Skin Sensitation (Cat.1, H317) Reproductive toxicity (Cat.2, H361) Chronic aquatic toxicity (Cat.3, H412)	Skin irritation (Cat.2, H315) Skin Sensitation (Sub-Cat.1A, H317) Chronic aquatic toxicity (Cat.2, H411)	Serious Eye Damage (Cat.1, H318) Skin Sensitation (Sub-Cat.1B, H 318) Acute toxicity (Cat.4, H302)
Additional Information	DBTDL is under discussion for TBT and DBT DBTDL use leads to the failure of specific labels (IKEA, LGA, CertiPUR)	2-Ethyl hexanoic acid: Reproductive toxicity (Cat. 2, H361) ↓ Volatile compound	Ricinoleic acid: No Reproductive toxicity ↓ Non-volatile compound	Neodecanoic acid: No Reproductive toxicity ↓ Volatile compound

Stannous Salt Catalysts – Property & Performance

	Stannous Octoate	Emission Free Tin Catalyst	2-EHA free T in C atalyst
Chemical Description	Stannous octoate - tin(II) salt of 2-ethylhexanoic acid	Stannous ricinoleate - tin(II) salt of ricinoleic acid	Stannous neodecanoate - tin(II) salt of neodecanoic acid
Appearance	slightly yellow liquid	clear, yellow to slightly turbid liquid	slightly yellow liquid
Tin Content	28.0 – 29.3 % tin(II)	12.5 - 13.5 % tin(II)	≥ 19.0 (up to 21.0) % tin(II)
Stannous Content		96 % minimum in relation to the tin content	
Viscosity (20 °C)	approx 350 mPas	700 – 3500 mPas	200 – 800 mPas
Specific Gravity (20 °C) approx 1.25 g/ml		1.075 ± 0.025 g/ml	1.13 ± 0.03 g/ml
Solubility	Soluble in poly	ols and most organic solvents, insoluble in water and alcohols	
Emission profile*	Emanation of 2-Ethylhexanoic acid (2- EHA)	No emanations!	Emanation of Neodecanoic acid (less acid emanation than K 29)
KOSMOS 29 Replacement	Common Stannous Octoate use levels: Low Density (MC): up to 0.70 pphp Medium Density: 0.15 – 0.25 pphp High Density: 0.10 – 0.15 pphp	Use level 2.7 times higher compared to S.O. to achieve same airflow. Small amine reduction necessary – about 20% less to achieve similar rise profile	Use level similar to Stannous Octoate to achieve same airflow. Higher amine level needed – about 20% more to achieve same rise profile
Special PerformanceDegrades to SnO and emissive 2-EHA during the PU formation		Emission-free alternative to Stannous Octoate	2-Ethyl-hexanoic acid free alternative to Stannous Octoate

*Emanation of the acid depends also on the foam type and the choice of the corresponding amine catalyst (pH of the foam).

Tin Catalyst Summary

Product	Regulatory Concern	Emissions / Extractions Issues	Performance	
DBTDL	Reproductive & Organ Toxicity Cell Mutagenicity Acute & Chronic Aquatic Toxicity	Extraction of Tributyl Tin (TBT)	 used to reduce densification from cold flow replace with stannous salt + Ortegol 204 	
STANNOUS OCTOATE	Reproductive Toxicity	Emission of 2-Ethyl Hexanoic Acid (2- EHA)	- standard tin catalyst for conventional foam	
2-EHA FREE TIN CATALYST	Not significant social	Emission of Neo Decanoic Acid (less than 2-EHA)	 eliminates emissions of 2-EHA same rise profile & airflow as T 9 / K 29 achieved with = tin level and +20% amine 	
EMISSION FREE TIN CATALYST	Not significant	No Emissions	 eliminates all tin catalyst emissions same rise profile & airflow as T 9 / K 29 achieved with 2.7x tin level and -20% amine 	

The merger of Evonik and Air Products' PMD has provided new capabilities

